Differential recovery of glycosaminoglycan after IL-1-induced degradation of bovine articular cartilage depends on degree of degradation
نویسندگان
چکیده
In the present study we examined cartilage matrix repair following IL-1-induced matrix depletion. Previous data indicated that, in some cases, chondrocytes can synthesize macromolecules to establish a functional extracellular matrix in response to a matrix-damaging insult or when placed in a three-dimensional environment with inadequate matrix. However, the conditions under which such 'repair' can occur are not entirely clear. Prior studies have shown that chondrocytes in trypsin-depleted young bovine articular cartilage can replenish tissue glycosaminoglycan (GAG) and that the rate of replenishment is relatively uniform throughout the tissue, suggesting that all chondrocytes have similar capacity for repair. In the present study we used the characteristic heterogeneous distribution of matrix depletion in response to IL-1 exposure in order to investigate whether the severity of depletion influenced the rate of GAG replenishment. We used the delayed Gadolinium-Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC) method to monitor the spatial and temporal evolution of tissue GAG concentration ([GAG]). For both mild (n=4) and moderate (n=10) IL-1-induced GAG depletion, we observed partial recovery of GAG (80% and 50% of baseline values, respectively) over a 3-week recovery period. During the first 2 weeks of recovery, [GAG] increased homogeneously at 10-15 mg/ml per week. However, during the third week the regions most severely depleted following IL-1 exposure showed negligible [GAG] accumulation, whereas those regions affected the least by IL-1 demonstrated the greatest accumulation. This finding could suggest that the most severely degraded regions do not recover fully, possibly because of more severe collagen damage; this possibility requires further examination.
منابع مشابه
Transforming Growth Factor-β1 Preserves Bovine Nasal Cartilage against Degradation Induced by Interleukin-1α in Explant Culture
Background and Aims: Chondrocytes and their differentiation play a central role in joint diseases. Effect of the transforming growth factor (TGF)-β1 on chondrocyte characteristics and differentiation is not clearly understood. This study was undertaken to investigate the effects of TGF-β1 on tissue characteristics and morphology of chondrocytes against degradation induced by interleuk...
متن کاملProtective Effects of Interleukin-4 on Tissue Destruction and Morphological Changes of Bovine Nasal Chondrocytes in vitro
Background: Previous studies have shown that some cytokines have protective effects on cartilage in joint diseases. In the current study, effects of IL-4 against morphological changes and tissue degradation induced by IL-1α on bovine nasal cartilage (BNC) explants were investigated. Methods: Fresh BNC samples were prepared from a slaughterhouse under sterile conditions. BNC explants culture was...
متن کاملCombination Effects of Prednisolone and Interleukin-4 Protect Bovine Nasal Cartilage Explants from Interleukin-1α Induced Degradation
Background: Current treatments for joint diseases are moderately successful, but unfortunately are associated with significant side effects. This study was undertaken to investigate the combination effects of IL-4 and prednisolone on tissue characteristics and production of matrix metalloproteinase-1(MMP-1) in IL-lα-treated bovine nasal cartilage (BNC) explants. Methods: BNC explants were cultu...
متن کاملThe Immunosuppressant FTY720 (Fingolimod) enhances Glycosaminoglycan depletion in articular cartilage
BACKGROUND FTY720 (Fingolimod) is a novel immunosuppressive drug investigated in clinical trials for organ transplantation and multiple sclerosis. It acts as a functional sphingosine-1-phosphate (S1P) receptor antagonist, thereby inhibiting the egress of lymphocytes from secondary lymphoid organs. As S1P is able to prevent IL-1beta induced cartilage degradation, we examined the direct impact of...
متن کاملAggrecanolysis and in vitro matrix degradation in the immature bovine meniscus: mechanisms and functional implications
INTRODUCTION Little is known about endogenous or cytokine-stimulated aggrecan catabolism in the meniscal fibrocartilage of the knee. The objectives of this study were to characterize the structure, distribution, and processing of aggrecan in menisci from immature bovines, and to identify mechanisms of extracellular matrix degradation that lead to changes in the mechanical properties of meniscal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arthritis Research & Therapy
دوره 5 شماره
صفحات -
تاریخ انتشار 2003